

In Search of Learning:
Facilitating Data Analysis in Educational Games

Erik Harpstead, Brad A. Myers, and Vincent Aleven
Human-Computer Interaction Institute

Carnegie Mellon University

Pittsburgh, PA 15213

{eharpste,bam,aleven}@cs.cmu.edu

ABSTRACT

The field of Educational Games has seen many calls for

added rigor. One avenue for improving the rigor of the field

is developing more generalizable methods for measuring

student learning within games. Throughout the process of

development, what is relevant to measure and assess may

change as a game evolves into a finished product. The field

needs an approach for game developers and researchers to

be able to prototype and experiment with different measures

that can stand up to rigorous scrutiny, as well as provide

insight into possible new directions for development. We

demonstrate a toolkit and analysis tools that capture and

analyze students’ performance within open educational

games. The system records relevant events during play,

which can be used for analysis of player learning by de-

signers. The tools support replaying student sessions within

the original game’s environment, which allows researchers

and developers to explore possible explanations for student

behavior. Using this system, we were able to facilitate a

number of analyses of student learning in an open educa-

tional game developed by a team of our collaborators as

well as gain greater insight into student learning with the

game and where to focus as we iterate.

Author Keywords

Educational Games, Analysis of Learning, Toolkits,

Logging.

ACM Classification Keywords

H.5.2 User Interfaces: Evaluation/methodology;

K.3.1 Computer Uses in Education: Computer-assisted in-

struction (CAI); K.8.0 Personal Computing: Games.

INTRODUCTION

Video games have become a compelling medium for in-

struction. Games possess many potential benefits for educa-

tion including their ability to motivate students as well as

provide them with authentic environments to practice new

skills with minimal personal risk. This has led education

researchers to begin to establish a field of educational

games studies [9,10]. Despite this glowing potential of

games for education, many researchers demand that more

rigor be applied to the methods of proving educational ef-

fectiveness within games [10,21]. One of the challenges in

meeting this demand for rigor is a lack of generalizable

methods for measuring learning within educational games.

While many methods have been proposed [8,14,18,19], it

remains difficult for game developers to know which meth-

od of measurement to use and how to integrate particular

method into their games during the process of iterative de-

velopment. Additionally, because games often incorporate

novel student activities for which there are no well-

established existing measurement methods, the measures

often need to be developed along with the game, also in an

iterative fashion. These challenges are compounded if a

researcher or developer wants to apply multiple methods of

measuring learning to their game, as each method may re-

quire a slightly different perspective of the player’s behav-

ior. To address these challenges, we have developed a

toolkit for capturing and analyzing student behavior within

open educational games that can support the application of

multiple methods of measurement and can also be used to

address questions beyond whether learning is observed

from the game. This approach was developed as part of a

larger collaborative effort between game designers and re-

searchers to develop a collection of educational games to

teach basic physics concepts to young children, the first of

which is RumbleBlocks [5] (see Figure 1).

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

CHI 2013, April 27–May 2, 2013, Paris, France.

Copyright © 2013 ACM 978-1-4503-1899-0/13/04...$15.00.

Figure 1. RumbleBlocks is a game where players must

construct a tower high enough to reach the alien while also

covering all of the blue energy balls.

The contributions of this paper are:

 A novel approach to recording and analyzing students’

performance in educational games, which uses introspec-

tion of the properties of re-created game states to facili-

tate analyses of player learning in the game. This ap-

proach can be used both as a formative analysis during it-

erative development to improve the game, and after the

game is deployed to evaluate the students’ learning.

 A toolkit, implemented in C# and Unity (unity3d.com/),

which supports this approach, and has been used to rec-

ord and analyze logs for 174 children playing the Rum-

bleBlocks game. This toolkit can be used to answer many

different questions posed by researchers and educators

about the children’s learning and performance.

 A collection of measures for the RumbleBlocks game

derived from re-created game states which other re-

searchers have demonstrated successfully measure learn-

ing of physics principles in 5-8 year olds.

RumbleBlocks

RumbleBlocks (Figure 1) is an educational game designed

to teach basic structural stability and balance concepts to

children in kindergarten through grade 3 (5-8 years old). Its

main focus is on three basic principles of stability: objects

with wider bases are more stable, objects that are symmet-

rical are more stable, and objects with lower centers of

mass are more stable. These principles are derived from

goals outlined in the National Research Council’s Frame-

work for New Science Educational Standards [7] and other

science education curricula for the target age group.

The game follows a sci-fi narrative where the player is

helping a group of aliens who are stranded across four plan-

ets when their mother ship is damaged. Each level consists

of an alien stuck on a cliff with their deactivated space ship

lying on the ground. The player must use blocks to con-

struct a tower that is tall enough to reach the alien on the

cliff. Additionally, they must make sure that their tower

covers a series of blue “energy balls” so that the spaceship

can have enough power to take off. Once the player is con-

fident about their tower, they can place the spaceship on

top, which triggers an earthquake. If, after the earthquake

ends, the tower is still standing and the spaceship is still on

top of it, then the player progresses to the next level. If the

tower or spaceship falls, then the player has to start over

from the beginning of the level.

Each set of levels in RumbleBlocks is designed to focus on

a different principle of stability. The targeting of different

principles is accomplished mainly though level design. The

energy balls can be used to both scaffold and limit the stu-

dents’ solution to a level, forcing them to prioritize one

principle over another. However, even with this scaffold

design, there are an unknown number of possible valid so-

lutions to any given level because the earthquake mechanic

relies on the dynamics of a real-time physics engine to

evaluate the student’s structure. That is, even though the

level designer may intend for a particular tower design to be

the solution, other designs may also work (see Figure 2).

RumbleBlocks is built within the Unity game engine. Unity

is a popular game engine and development environment

that is designed to allow game developers to rapidly proto-

type and iterate on game ideas by providing a suite of tools

that automate many common game development tasks. One

of these tools is the built-in physics engine, NVidia’s

PhysX engine, used to simulate realistic rigid body physics.

This allows developers to create an accurate physical envi-

ronment with much less effort. RumbleBlocks takes ad-

vantage of this feature to simulate the interactions of the

blocks and the spaceship within the game. This means that

the spaceship and blocks will respond to gravity and colli-

sions as if they were real objects.

RumbleBlocks falls into a class of games that Spring and

Pellegrino referred to as open games [19]. Open games are

characterized by having a set of overarching rules that gov-

Figure 2. Two example solutions to a level in RumbleBlocks. Both solutions were successful, but knowing only that, it is hard to

tell which principles each student understands.

http://unity3d.com/

ern the interactions of the game’s elements, as well as a

non-restrictive structure that allows players to explore mul-

tiple paths to a solution. These elements make open games

attractive from an educational perspective because they

allow students to gain lots of practice in an authentic setting

that carries few substantive consequences for failure, all

tenants of Gee’s principles of learning in games [9]. This

authentic setting, however, can make it difficult for design-

ers to know whether or not a student’s behavior demon-

strates understanding of a specific piece of target

knowledge. For an illustration of this issue in Rumble-

Blocks, refer to Figure 2. In this example, the level is de-

signed to target the principle of structures with a low center

of mass are more stable. Both student answers were suc-

cessful after the earthquake and passed the level, but it is

not readily clear how well either student has grasped the

target principle. The tower on the right represents the an-

swer envisioned by the level designer; however, the tower

on the left actually has a lower center of mass.

Measuring Learning in Games

Educational games are ultimately judged by their capacity

to show transferable learning outside of the game environ-

ment. Given how important evidence of learning is, it bene-

fits educational game developers and researchers to have

methods for measuring student learning from gameplay.

The only way to truly claim that a game results in student

learning is to conduct controlled lab or classroom experi-

ments where students’ improvement in understanding can

be measured external tests. These kinds of evaluations, at

least in their most rigorous form, are best saved for the end

of the development cycle due to their cost in time and labor.

The truly ideal situation is to develop measures for learning

that can be evaluated within the game. While these

measures also require grounding through controlled studies

that measure out-of-game transfer of learning, it can be

helpful to develop and iterate on them along with the game.

Once validated, in-game measures allow the game to serve

as an assessment in itself, opening up avenues for large

scale data collection such as those used by Stamper et al.

and Anderson et al. [2,20].

A number of methods for measuring within-game learning

from student play exist in the literature. One simple method

is to measure how many levels a player passed, or, related-

ly, recording the last level the student completed. The bene-

fit of this approach is that it is very straightforward and

relatively easy to implement. Delacruz, Chung, and Baker

used a measure of last level beaten when they found validi-

ty evidence for a game to be used as a standalone assess-

ment of student math ability [8]. A single level success met-

ric was also used by Andersen et al. [2] in a study of the

effects of different tutorial styles on gameplay learning, i.e.

how well a player was learning to play a game. This ap-

proach works well when the mechanics of gameplay are

well-aligned to the target content being taught, and in the

case of Andersen et al. they are the same thing. However, it

cannot always be assumed a priori that gameplay and target

knowledge are well aligned. An example of poor alignment

came up during the early stages of developing Rumble-

Blocks. During playtests it was found that some students’

towers were falling against the alien’s cliff, which prevent-

ed them from truly falling over, and allowed players to suc-

ceed at levels they maybe should not have. This had the

effect of providing players with inconsistent feedback on

their constructions. If a player who uses a poor strategy

passes a level that they should not have, they will never be

required to reflect on the faults in their design, and thus will

miss out on an important learning opportunity. To address

this problem, the game designers moved the cliff farther

from the construction area in an attempt to bring the game’s

feedback into better alignment with its educational goals.

A further limitation of using success per level as an indica-

tor of learning is that it is very coarse-grained. This ap-

proach might work well when the learning task within each

level is relatively straightforward, and does not involve a

wide range of knowledge components, so that it is straight-

forward to attribute failure on a level to specific missing or

incorrect piece of knowledge. However, games do not al-

ways have that characteristic. In fact, one reason why

games are attractive for purposes of learning and assess-

ment is that they can present learners with tasks that are

more complex than those typically found in classrooms or

paper-and-pencil tests.

A number of more complex methods also exist in the realm

of measuring learning in games. One such method is the use

of Evidence Centered Design (ECD) [16]. ECD relies on

three major components: a competency model, an evidence

model, and a task model. The competency model describes

the target knowledge for the system. The evidence model

analyzes a student’s interactions with a system based on a

researcher-defined rubric for scoring. The evidence model

also expresses a relationship between the competency mod-

el and the observed scores. Finally, the task model provides

a framework for describing the tasks a learner performs

within the system. One of the benefits of ECD is that it does

not require direct instrumentation into a game; however,

this comes at the expense of having to analyze video re-

cordings of player performance. Shute and colleagues have

applied the ECD process successfully to existing commer-

cial games [18].

Another complex method, drawn from work on intelligent

tutoring systems, is Bayesian Knowledge Tracing (BKT)

[6]. BKT tries to infer a student’s knowledge state for a set

of knowledge components based on their performance. It

does this by assigning every action in a system to different

knowledge components that can be correctly or incorrectly

performed. It then takes the sequence of correct and incor-

rect student actions and runs them through a Bayesian Net-

work to determine the probability that the student under-

stands each knowledge component based on the observed

pattern. Manske and Conati have used similar Bayesian

network analysis to measure student learning within an ed-

ucational mathematics game [14].

A further method from the intelligent tutoring literature is

the use of empirical learning curves to plot the performance

of students [15]. This method assigns student actions as

correct or incorrect in terms of a particular piece of target

knowledge, similar to BKT. It then plots the error rate of

each knowledge component on each successive opportunity

to apply the knowledge component. If a student is learning

the content (i.e., the targeted knowledge component) being

measured then the learning curve will follow the shape of a

power curve, following the “power law of practice” [17].

Formulating student performance this way allows for com-

parison between systems based on the slopes of their re-

spective curves. Baker and colleagues have applied learning

curve analysis as a way of measuring the increase in fluen-

cy of players’ ability to judge divisors of numbers in an

educational math game [3].

Each of these methods requires a different formulation of

data, a different perspective of student performance, and a

different grain size of examination. When looking at raw

performance within a game, such as the rate at which the

student passes levels, or how many levels they manage to

beat, the analysis is concerned with the results of an entire

level, whereas BKT requires information about individual

student knowledge components, and ECD and learning

curve analysis can work at multiple levels. Data for one

method is not generally compatible with another without

translation, forcing designers to choose a particular direc-

tion. Our approach is designed to enable all of these kinds

of analyses to be done on the log data.

Questions beyond Learning

While evidence of learning is the primary goal when look-

ing at educational games, it is not the only question that can

be asked about a game. Many other questions can arise over

the course of development. Here is a brief list of questions

that were raised by researchers during the development of

RumbleBlocks:

 Are the goals of the game actually rewarding the kinds of

behaviors we want to be encouraging? Does success in

the game (e.g., a tower that withstands an earthquake)

align well with educational objectives?

 Can we measure the “difficulty” of levels? Does the dif-

ficulty of the levels progress in an appropriate way?

 How many different solutions are there to each level?

Are there solutions to levels that we did not intend?

 What measures correlate with the “fun” of levels?

Answering these questions can affect the interpretation of

learning measures as well as provide implications for rede-

signing gameplay mechanics. Furthermore, we have found

that the researchers and educators on the team continually

come up with new questions they would like to answer

about the game. When selecting methods to measure learn-

ing, it would be helpful if they could also address some of

these kinds of questions, and could facilitate answering new

questions on the existing dataset from previous players.

OUR APPROACH

To this end, we have developed our approach as a way of

exploring multiple questions from the same set of player

data. The system we developed had to be capable of an-

swering learning-related questions as well as facilitating

exploration of other possible questions. Our approach has

two major components in it: a toolkit for logging player

actions within the game, and an architecture for a Replay

Analysis Engine that rebuilds and annotates a player’s ses-

sion. Currently the system is implemented within the Unity

game engine, but it is not conceptually restricted to this

environment.1

Play log analysis is a common practice of game user re-

search with many pre-existing examples in the field [1,12].

Our approach differs from prior approaches by examining a

student’s play session as a live instantiation of the game

state within a running game engine. This allows analysis to

consider a much deeper picture of a student’s performance,

which can be analyzed from multiple perspectives, and pro-

vides access to more contextual properties of game objects

than a designer may have thought to measure initially. One

of the hallmarks of our design is the ability to adapt new

analysis onto existing data, freeing education researchers

from having to rerun large classroom studies while experi-

menting with new measurement or analysis techniques.

Logging System

The logging system uses an adaptation of the PSLC

DataShop XML format, which is a commonly used format

for describing student interactions with intelligent tutoring

systems [13]. The primary motivation behind the design of

the logs in our system is to be descriptive and to defer as-

sessment to the analysis stage, whereas the original

DataShop format records both the action the student took

and the assessment of the tutor system as a single transac-

tion.

Logs of student behavior are captured at the level of a basic

action, defined as the smallest unit of meaningful action

that a player can exert on the game world. These actions are

meant to be contextualized to the game world, i.e. picking

up or dropping an object, rather than the raw input of the

player, i.e. mouse down at position (x, y). The reason for

recording the smallest possible actions is to allow for analy-

sis at various grain sizes by capturing data at the finest

grain size. Additionally, it is easy for the game implementer

1 The library for logging actions can be found at

https://github.com/eharpste/Unity-Logger and the imple-

mentation of the replay system for RumbleBlocks is availa-

ble upon request from the authors.

https://github.com/eharpste/Unity-Logger

to see where logging calls need to be inserted into the game

code because the basic actions make up the base mechanics

of the game.

In addition to basic actions, logs also carry contextual in-

formation, such as the beginnings and ends of sessions and

levels and whether levels were beaten or not. This infor-

mation can also carry the initial conditions of the level,

which might be relevant to analysis. Capturing this infor-

mation facilitates coarse grain analyses dealing with whole

level performance. This information can also be used to

focus fine grain analysis on particular levels.

A log of a single action is described using the Selection-

Action-Input paradigm borrowed from DataShop [13]. In a

log, the Selection is defined as the entity the player is acting

on, in most cases the name of the entity, or some other

unique identifier. The Action is what the player is doing to

the entity, a text description of the type of action. The Input

is a parameter to the action being performed. The meaning

of the Input field is contextual to the type of action, and is

not always meaningful, such as in the case of button presses

which use “-1” for Input as a standard convention. In the

case of RumbleBlocks, the Inputs of block-related actions

correspond to the position, rotation, and velocity of the

block being acted on, the origin position when picking up

blocks and the resultant position when releasing them.

There is also capacity to log actions that are not performed

directly by the player through the same mechanism, which

we refer to as engine actions. In RumbleBlocks, engine

actions are used to record when the system activates the

earthquake mechanism, and when the blue energy balls are

covered and uncovered.

The novel aspect of our logging system is that each action

is also paired with a description of the state of the game just

before the action took place; this appears in the logs as a

separate entry that is paired with the action by a unique

transaction ID. This allows analyses to consider each action

within the context in which it took place, and know the ini-

tial conditions of an action that may take time to broadly

affect the game environment. The logging system also uses

the state just before the action to account for actions that

might remove an entity. The contents of a state are defined

by the game developer and should contain only objects that

are deemed relevant to ensure accurate replay. There is also

capacity for simpler actions to not have accompanying

states, such as pressing a “Level Start” GUI Button. In

RumbleBlocks, the state describes the position, rotation,

and velocity of the spaceship and all of the blocks currently

on the field. The position of the cliff and blue energy balls

are not needed in the state descriptions because they are

immutable and instead are logged as initial conditions.

It should be noted that the actions being captured are not

necessarily the set of actions that are deemed relevant by a

method of analysis. ECD, for example, may consider a set

of actions irrelevant to measuring a particular piece of

learning. The recorded actions are the set of actions that are

relevant to gameplay. This stance is in keeping with the

motivation to make logs descriptive of what is happening in

the game. Using purely descriptive logs allows researchers

to revisit old data in light of new findings or new analysis

methods without having to run additional expensive field or

classroom studies.

The logging library was written in C# and is designed to be

straightforward to use. For each player action and special

event such as level start and end, the implementer adds a

call to a function that takes as parameters the Selection,

Action, and Input of the action. (For convenience, there are

also simpler versions of this call that leverage the standard

properties that all Unity game objects have.) In order to log

the state, the implementer keeps up-to-date a global list of

all relevant game entities, and the logger automatically logs

the relevant properties. For convenience, the implementer

can alternatively attach a script to these objects using Uni-

ty’s interactive builder at design-time rather than adding

them to the list programmatically.

The highly descriptive nature of the logs can make them

somewhat large. The entire RumbleBlocks dataset we dis-

cuss here, contains logs from two sessions of play (approx.

20 minutes per session) by 174 children, and is roughly

850MB in size. The system is primarily designed to log to a

webserver; however, when running classroom studies, we

have found that the volume of logs can become intractable

for some school networks and so a locally logged version is

also available.

Replay and Analysis Engine

A novel aspect of our system is that the analyses of student

performance are evaluated using an active replay of the

student’s game session in the running engine rather than on

the raw logs themselves. This replay process happens with-

in the second main component of the approach, which we

call the Replay Analysis Engine (RAE). This tool is also

implemented in C# for the Unity engine. The log replay

system reads in a student log and reconstructs the student’s

play session action-by-action. For each action, the RAE

first constructs the state in which the action took place and

then enacts the student action to let the Unity game engine

calculate the consequences of that action. For example, if

the action is to let go of a block, then the RAE will use the

game engine to calculate where the block ends up after it

finishes falling.

The RAE makes use of Unity’s “prefab” architecture. A

prefab is a Unity construct that serves as a master copy of a

complex game object to allow for easy instantiation and

duplication. Using this system allows the analysis designer

to ensure that the game objects on which they run their

analysis behave exactly the same as the ones the player

experienced. This, in turn, ensures that any analysis is a

valid reproduction of student performance in the game.

The RAE has a few different options for determining when

to stop the simulation and run the analyses. By default, the

logged state is re-instantiated and simulation is stopped

immediately. Another option (and the primary one used in

RumbleBlocks analysis) is that once the state is re-

instantiated, the simulation is run until all the objects in the

interface have stopped moving. Once this happens, the sim-

ulation is stopped and the analyses are run. There is also an

option to run the simulation for a defined amount of game

time, which can also be accelerated without loss of accura-

cy.

The RAE supports two different ways to analyze the logs.

The first way is through an API that allows access to the

states created by student actions. The analysis implementer

can write C# code which leverages this library to generate

metrics. This is useful when the analyzer needs to access

specific properties of the objects. For example, in Rumble-

Blocks we were interested in the properties of structures

students built, such as their centers of mass. We used our

API to examine the instantiated version of blocks to find

which ones were part of a connected tower, which then al-

lowed us to average their centers of mass to create a center

of mass for the structure as a whole. Without the ability to

access the collider information or rigid body properties of

game objects in the live engine we would not have been

able to do this.

Implementing an analysis using the RAE API resembles

creating a new level for the game. The analysis developer

first creates a skeleton level containing any entities that are

common to all levels of the game and an entity provided by

the library that runs the actual replay. The developer must

also include any prefabs of objects that may appear in a

state message. The RAE provides a set of routines to iterate

through the actions in a student log, and to inspect the ele-

ments of a current action state. It also provides routines for

accessing the success and failure of each level in the log so

the analysis designer can easily have access to whatever

properties of the performance they want to analyze.

The second way of using the RAE is by running student

logs through predefined analyses. This process generates

spreadsheets of data that can be used for statistical analysis.

We have used the API provided by the RAE to develop a

set of common measures to filter logs based on their proper-

ties, such as outputting only specific levels or users. Access

to these common filtering operations is provided through

onscreen menus while the RAE is running to control which

data are recorded in the spreadsheets.

The benefit of the RAE approach is the ability to create a

set of potential measures and analyses and iterate on them

separately from the development of the game itself. Since

the analysis system contains all common level elements, it

is agnostic to level design and to some changes in mechani-

cal design. One slight limitation is that it requires the game

developers to maintain old copies of prefabs within the

game files so that future analysis of old data will remain

consistent. There are situations where one might want to

break this rule, to explore if the responses to previous play-

ers’ actions may have had different results if a particular

rule was changed.

USE IN ANALYSIS FOR RUMBLEBLOCKS

We used our toolkit with RumbleBlocks as part of a forma-

tive analysis of the game’s design, so we and other mem-

bers of our team of collaborators were able to perform a

wide range of analyses. The data we discuss here were

gathered as part of a classroom study in two Pittsburgh area

public schools, with subjects taken from kindergarten to

third grade classrooms (roughly 5 to 8 year-olds). This

study was meant to both check the progress of the game

design and attempt to ground, for the first time, measures of

learning within the game against external (i.e., out-of-game)

assessments of the educational objectives of the game.

For the purposes of this study, two sets of levels were se-

lected to be used as in-game pre- and post-tests counterbal-

anced across students. These levels were chosen out of the

collection of regular building levels but altered to have their

blue energy balls removed, in addition to removing the abil-

ity to allow students to retry on a failed attempt. These spe-

cial levels were placed after a short collection of tutorial

levels, which explained the mechanics of the game. The

intention of this design was to allow us to get a sense of the

kinds of structures students would build before they had a

large amount of experience with the game, and after they

had a chance to practice building. In addition to these in-

game evaluations, players also took out-of-game paper and

pencil tests, developed by our colleagues, before and after

playing the game. These tests contained items relating to

stability and construction, based on our three principles of

base width, low center of mass, and symmetry. We only

touch on a subset of these learning analyses here, since the

full results will appear elsewhere.

Learning Analysis

Our team was interested in exploring many questions, such

as those listed above about RumbleBlocks but chief among

them was whether or not we could say there was evidence

of within-game learning related to the game’s educational

objectives (i.e., understanding and application of the three

principles of stability). We measured a slight, yet signifi-

cant, increase in performance from pretest to posttest on the

out-of-game measures (p < .05); however, we were also

interested in whether learning could be measured in the

game, using data provided by our system. In looking at the

difference in raw performance, i.e., the pass rate of the in-

game pre-test and post-test levels, there is a small, yet sig-

nificant, improvement in the passing rate (p < .001). This

improvement however could potentially be attributable to

simply learning the game mechanics (although that expla-

nation would not account for the increase in performance

measured on the out-of-game pre-test and post-test).

To explore this issue further, we wanted to see if, within the

game, there were performance gains in terms of the specific

principles. We are interested in this measurement as a way

of getting a clearer picture of exactly what students were

learning and not just that they were getting better at passing

levels. This would mean that from pre to post, students

would build towers that showed a better awareness that (1)

a structure with a wide base is more stable, (2) a structure

with a lower center of mass is more stable, and (3) a struc-

ture that is symmetrical is more stable. To find out whether

they did, we instrumented the replay system to calculate a

variety of metrics based on the final state of each level that

a student played. These metrics were: the width of the tow-

er’s base, the position of the tower’s center of mass relative

to the ground, and a measure of symmetry defined as the

angle formed by a ray from the center of the base to the

center of mass and the ground (illustrated in Figure 3). The-

se measures were then compared to values calculated across

all other players for that same level in order to create a rela-

tive score for each player. In the case of base width, this

score is relative to the maximum observed width for that

level; for center of mass position, the score is relative to the

lowest observed position for that level; and for symmetry a

score is calculated relative to 90 degrees which would rep-

resent perfect symmetry. When comparing the average rela-

tivized pre and post scores, we saw a significant improve-

ment, with a one-tailed t-test, for the wide base and sym-

metry principles (see Table 1), meaning that at the end of

playing the game, students were beginning to design towers

that had wider bases and more symmetrical layouts. How-

ever, we did not see any significant difference in terms of

center of mass position, meaning that students did not seem

to attempt to lower the center of mass of their structures.

This result would suggest that the game is currently not

successfully teaching the center of mass principle. A rec-

ommendation to the game designers from this finding

would be to explore ways of making the center of mass of a

tower more salient to the player so that they might be able

to account for it when creating their solution to a level.

Gameplay Alignment Analysis

Another interesting question that we explored was how well

the game was aligned to its educational objectives. Many

researchers have pointed to the importance of alignment of

game goals to instructional goals [15,18,22]. The basic

question is: does the game properly incentivize the behav-

ioral patterns that we want to foster? Additionally, in the

case of RumbleBlocks, we wanted to know if levels that

were designed to target a particular piece of knowledge

(i.e., one of the three principles of stability) actually suc-

ceeded in doing so. Answering this question during a form-

ative evaluation can have implications for level design and

even on the design of a game’s core mechanics if there are

alignment problems. We instrumented a new set of metrics

in addition to the ones used in the learning analysis de-

scribed above, including what we call the “stability metric.”

From the standpoint of realistic earthquake physics, the

stability metric is the amount of energy that would be re-

quired to overturn a tower about its weakest foot, and so a

high value in this metric would represent a stronger design.

In using these metrics for analyzing alignment, we wanted

to explore how well metrics that should indicate a well-

constructed tower actually corresponded to students passing

a given level. To do this, we created 3 groups by collecting

together the levels that target each of the three principles,

and then we performed logistic regressions using each of

the metrics of the players’ towers to predict success on a

level. The results of the regression analyses can be found in

Table 2. When looking at the level-relevant metrics for base

width, center of mass height, symmetry, and the stability

metric, we found a significant predictive relationship be-

tween them and success on level, which is what would be

expected, however the direction of the relationship for the

center of mass metric was in the wrong direction. This

Figure 3. Illustrations of measurements used in Rumble-

Blocks evaluation. The length of the red line is the base

width, the length of the blue line is the height of the center

of mass and the size of the green angle measures symmetry.

Measure
Mean (SE)

T-Statistic
Pretest Posttest

Width of Base 0.60 (.01) 0.64 (.01) -2.767**

Symmetry Angle 5.98 (.34) 5.20 (.27) 1.9783*

Center of Mass 1.61 (.02) 1.63 (.02) -0.663

Table 1. Pre and posttest means and significance values for

metrics. Note for the width of base measure, a higher value is

more desirable, whereas for the symmetry angle and center of

mass measures, a lower value is more desirable.

* p < .05, ** p < .01

would mean that, counter to what the target principles sug-

gest, students that build with higher relative centers of mass

are more likely to succeed on the levels that target the cen-

ter of mass principle. One possible explanation for this

comes from the level designs for the center of mass levels.

In an attempt to have the center of mass levels isolate the

center of mass principle from the highly related wide base

principle, the level designers created a few levels where the

intended solution had a very narrow base. This has the ef-

fect of actually raising the center of mass for successful

structures and possibly introducing confounds. The results

of this alignment analysis as well as the learning analysis

suggest that the design of these levels should be revisited.

Solution Space Analysis

An ongoing initiative in our research group is to attempt to

answer the question of how many unique solutions students

have created for each level. While every level was designed

around a particular envisioned solution, there is no re-

quirement that players use it. Understanding the solutions

that students actually created can lead to many further anal-

yses, such as finding solutions we did not intend that might

bypass the learning goals of the game, or exploring rela-

tionships between particular solution patterns and better

performance on transfer measures, or analyses of how chal-

lenge, fun, and levels having multiple solutions are related.

A novel way to approach counting unique solutions is to

employ expectation maximization clustering along metrics

that describe student solutions with cross validation to de-

termine an optimal number of clusters that describes the set

of all solutions to a given level, with each cluster represent-

ing a unique solution. We have been exploring the use of

the metrics derived from our previous analysis as features

to feed into the clustering algorithm. This is somewhat

problematic as the raw metrics, like center of mass location

and width of base, cannot render true equality between two

states in the game as quite different structures could have

similarly located centers of mass or bases of the same

width. Our initial analysis attempts that used clustering on

our existing metrics were promising but not readily satisfy-

ing. This led us to brainstorming a larger collection of fea-

tures to build into the RAE that could be beneficial in clus-

tering student solutions together. Among these new metrics

are measures of the towers’ extents, such as total height and

maximum width, as well as measures to capture the position

of the spaceship relative to the student’s tower. It is our

hope that this initiative will render a tractable set of student

solutions out of the large set that we currently have in log

data. Once a smaller set has been determined, they could be

used diagnostically to make inferences as to how a student

might perform on transfer tests based on which designs they

used.

Another possible way of attacking the question of how

many student answers there are is to use plan recognition.

This method would require us to decide on a grammar or

set of production rules that we can apply in the RAE to an-

notate the log. Once a collection of higher-order actions is

gathered, students can be grouped by the plans they demon-

strate. This is a promising direction for analysis and re-

mains part of our ongoing work.

Further Analyses

Going forward, our team will be exploring other analyses

through the data afforded by our approach. One of these is

to explore more fine-grained analysis by applying BKT as a

way of corroborating our coarse grained measures. This

would require that we identify knowledge components pre-

sent within RumbleBlocks that can be mapped to particular

actions. Experimenting with different mappings is a time

intensive task, but it is made easier by already having a way

of formalizing the actions a student can take within the

game and having a dataset to test models with.

Group Coefficient Estimate Standard Error Z-Statistic

Levels targeting the

Wide Base Principle

Width of Base 0.26227 0.05667 4.628***

Center of Mass -0.13203 0.122101 -1.091

Symmetry Angle -0.03086 0.01041 -2.965**

Energy Required -0.28414 0.12115 -2.345*

Levels targeting the

Low Center of Mass

Principle

Width of Base 0.036602 0.026918 1.360

Center of Mass 0.783418 0.107301 7.301***

Symmetry Angle -0.003038 0.005309 -.0572

Energy Required -0.061895 0.114265 -0.542

Levels targeting the

Symmetry Principle

Width of Base 0.066311 0.028741 2.230*

Center of Mass 0.167317 0.073404 2.279*

Symmetry Angle 0.022834 0.008717 2.620**

Energy Required 0.389674 0.107243 3.634***

Table 2. The results of logistic regression predicting level success based on metrics within groups of levels targeting a specific

principle. Note for the width of base measure, a higher value is more desirable, whereas for the symmetry angle and center of

mass measures, a lower value is more desirable.

* p < .05, ** p < .01, *** p < .001

Another open question that we will tackle is whether or not

the difficulty in the game increases in a reasonable manner.

One way of measuring problem difficulty is by looking at

the amount of time and number of actions it takes to beat

different levels. If certain levels seem to take inordinate

amounts of time to beat then this might indicate that the

level is too difficult. This method, however, cannot proper-

ly factor out learning of game mechanics or physics content

without randomizing the level order, which is hard to do in

a game with a narrative context such as RumbleBlocks.

Another way of exploring difficulty is to look at how many

times players have to backtrack when trying to find a suc-

cessful answer (i.e., build a successful tower). This can be

accomplished by defining patterns of actions that are in-

dicative of backtracking, such as placing a block back into

the inventory or deconstructing a structure and throwing

blocks to the side. Levels with a high degree of backtrack-

ing could also indicate levels that are more challenging.

A final question that will be explored arises from our game

design partners in asking if there is evidence of the game

being fun or not. This might be measured by looking at how

long players played and how often they returned to the

game. This data is readily available from the logs we cur-

rently possess; however, since our formative evaluation was

conducted in a classroom setting, this data is confounded by

the fact that players were a captive audience. Another way

we might approach this question is by looking at the rate at

which players experiment with the game’s mechanics as a

measure of playfulness; the cluster analyses and plan

recognition initiatives could help with this by looking at the

diversity of solutions within a student’s actions.

DISCUSSION

So far our approach has facilitated many different analyses

that have benefited our educational game development pro-

ject. We were able to explore course grain learning analysis

on a principle level, and found that RumbleBlocks appears

to be teaching players to address the wide base and sym-

metry principles when building simple structures. We were

also able to examine the alignment of gameplay to our stat-

ed content goals, and found that the alignment is fine for

two of the three targeted principles, but that there are poten-

tial issues with the alignment of levels targeting low center

of mass, which may help explain the results of our learning

analysis. Finally, we have also used our technique to begin

to map the solution space of RumbleBlocks, giving us a

better understanding of what kinds of student answers we

are seeing. Each of these findings can help provide feed-

back for further refining the game.

Each of the analyses we have explored so far requires a

slightly different perspective on the performance of players.

The learning analysis asked questions about our players by

looking at their final solutions to levels. The alignment

analysis was concerned with the design of the game itself

and used student solutions as a corpus for analysis. Map-

ping solution space and measuring fine grained progress

required a representation of the steps students took

throughout the game. Without the benefit of our replay

analysis engine exploring each of these questions would

have necessitated a different expensive classroom study,

and a different characterization of student performance.

As our team continues to move forward and develop new

games we will also continue to evolve the system. Currently

the implementation of the toolkit is restricted to the Unity

environment and many aspects of the log replay system rely

heavily on Unity-specific constructs, such as the prefab

architecture. There is no reason that the approach could not

be implemented in other environments, however. At its

core, the approach requires that the entities in the game can

be recreated dynamically without loss of accuracy. Given

that dynamically creating large numbers of similar game

objects is a common requirement for games, many existing

engines contain such capabilities.

However, this approach is certainly not applicable to all

game types. Our work so far, and into the foreseeable fu-

ture, is focused on single-player physics games, which do

not have to deal with issues such as the interactions of mul-

tiple players or the open three dimensional movements of

player avatars, such as those present in multi-user virtual

environments like River City or Quest Atlantis [4,11]. Ap-

plying our process to these kinds of environments would

demand more data aggregation on the logging side to avoid

information overload from logging every player’s minute

movements. An alternative might be to only log when play-

ers enter and leave certain areas rather than the individual

movement commands. This would end up yielding data

similar to the “heat map” analysis already commonly used

in game user research [1].

As we begin to publish our games online, we are also inter-

ested in exploring the capacity to make them adaptive to

learners’ needs. One of the benefits of our architecture that

readily serves this goal is the fact that the analysis measures

are built in the exact same environment as the game itself.

This means that once we are satisfied by the reliability of a

particular measure, it can be easily moved into the live

game to serve as an on-line assessment. When the measure

reveals that students are struggling, we could then try to

serve them levels adaptively to focus their learning.

CONCLUSION

Open educational games have proven to be difficult to ana-

lyze. We have developed an approach for looking at student

performances in open educational games that facilitates

multiple kinds of analysis through log reinterpretation, and

we implemented this approach in a toolkit and set of analy-

sis tools for Unity in C#. Using a more traditional logging

approach, this kind of analysis would have required multi-

ple expensive classroom studies to gather data as new ques-

tions and measures were envisioned by our team. Addition-

ally, analysis at the level of individual principles would not

have been possible using only success on levels as a metric.

The toolkit is available to others to extend and apply to

their own games. It is our hope that others will embrace the

methodology for recording players’ behavior in games as a

way of exploring multiple measures of learning. Having

consistent measurement and analysis techniques will help

bolster the methodological rigor of the field of educational

game design.

ACKNOWLEDGMENTS

We would like to thank development team of Rumble-

Blocks as well as our collaborators on the ENGAGE Pro-

ject. This work was supported in part by the DARPA

ENGAGE research program under ONR Contract Number

N00014-12-C-0284 and by a Graduate Training Grant

awarded to Carnegie Mellon University by the Department

of Education # R305B090023.

REFERENCES

1. Ambinder, M. Valve’s Approach to Playtesting: The

Application of Empiricism. Presented at GDC 2009,

(2009).

2. Andersen, E., Rourke, E.O., Liu, Y., et al. The Impact of

Tutorials on Games of Varying Complexity. Proc. CHI

2012, (2012), 59–68.

3. Baker, R.S.J. d, Habgood, J.M.P., Ainsworth, S.E., and

Corbett, A.T. Modeling the Acquisition of Fluent Skill

in Educational Action Games. In User Modeling 2007.

2007, 17–26.

4. Barab, S., Thomas, M., Dodge, T., Carteaux, R., and

Tuzun, H. Making Learning Fun: Quest Atlantis, a

Game without Guns. Educational Technology Research

and Development 53, 1 (2005), 86–107.

5. Christel, M.G., Stevens, S.M., Maher, B.S., et al.

RumbleBlocks: Teaching Science Concepts to Young

Children through a Unity Game. Proc. CGames 2012,

(2012), 162–166.

6. Corbett, A.T. and Anderson, J.R. Knowledge tracing:

Modeling the acquisition of procedural knowledge. User

Modelling and User-Adapted Interaction 4, 4 (1995),

253–278.

7. Council, N.R. A Framework for K-12 Science

Education: Practices, Crosscutting Concepts, and Core

Ideas. The National Academies Press, 2012.

8. Delacruz, G.C., Chung, G.K.W.K., and Baker, E.L.

Validity Evidence for Games as Assessment

Environments (CRESST Report 773). Los Angeles, CA,

2010.

9. Gee, J.P. What video games have to teach us about

learning and literacy. Palgrave Macmillan, New York,

2003.

10. Honey, M.A. and Hilton, M. Learning Science Through

Computer Games and Simulations. National Academic

Press, Washington, D.C., 2011.

11. Ketelhut, D.J. The Impact of Student Self-efficacy on

Scientific Inquiry Skills: An Exploratory Investigation

in River City, a Multi-user Virtual Environment.

Journal of Science Education and Technology 16, 1

(2006), 99–111.

12. Kim, J.H., Gunn, D. V, Schuh, E., Phillips, B.C.,

Pagulayan, R.J., and Wixon, D. Tracking Real-Time

User Experience (TRUE): A comprehensive

instrumentation solution for complex systems. Proc.

CHI 2008, (2008), 443–451.

13. Koedinger, K.R., Baker, R.S.J. d, Cunningham, K.,

Skogsholm, A., Leber, B., and Stamper, J. A Data

Repository for the EDM community: The PSLC

DataShop. In C. Romero, S. Ventura, M. Pechenizkiy

and R.S.J. d. Baker, eds., Handbook of Educational

Data Mining. 2010, 43–55.

14. Manske, M. and Conati, C. Modelling Learning in an

Educational Game. In C.-K. Looi, M. Gord, B.

Bredeweg and J. Breuker, eds., Artificial Intelligence in

Education: Supporting Learning through Intelligent and

Socially Informed Technology. IOS Press, Amsterdam,

Netherlands, 2005, 411–418.

15. Martin, B., Koedinger, K.R., Mitrovic, A., and Mathan,

S. On Using Learning Curves to Evaluate ITS. Proc.

AIED 2005, (2005), 419–426.

16. Mislevy, R.J., Steinberg, L.S., and Almond, R.G. On the

Structure of Educational Assessments. Measurement:

Interdisciplinary Research and Perspectives 1, 1 (2003),

3–62.

17. Newell, A. and Rosenbloom, P.S. Mechanisms of skill

acquisition and the law of practice. In J.R. Anderson,

ed., Cognitive skills and their acquisition. Lawrence

Erlbaum Associates, Hillsdale, NJ, 1981, 1–56.

18. Shute, V.J. Stealth Assessment in Computer-Based

Games to Support Learning. In S. Tobias and J.D.

Fletcher, eds., Computer Games and Instruction.

Information Age Publishers, Charlotte, NC, 2011, 503–

524.

19. Spring, F. and Pellegrino, J.W. The Challenge of

Assessing Learning in Open Games : HORTUS as a

Case Study. Proc. GLS 2011, (2011), 200–208.

20. Stamper, J.C., Lomas, D., Ching, D., Ritter, S.,

Koedinger, K.R., and Steinhart, J. The Rise of the Super

Experiment. Proc. EDM 2012, (2012).

21. Young, M.F., Slota, S., Cutter, A.B., et al. Our Princess

Is in Another Castle: A Review of Trends in Serious

Gaming for Education. Review of Educational Research

82, 1 (2012), 61–89.

